Results of an Adaboost Approach on Alzheimer's Disease Detection on MRI
نویسندگان
چکیده
In this paper we explore the use of the Voxel-based Morphometry (VBM) detection clusters to guide the feature extraction processes for the detection of Alzheimer's disease on brain Magnetic Resonance Imaging (MRI). The voxel location detection clusters given by the VBM were applied to select the voxel values upon which the classi cation features were computed. We have evaluated feature vectors computed over the data from the original MRI volumes and from the GM segmentation volumes, using the VBM clusters as voxel selection masks. We use the Support Vector Machine (SVM) algorithm to perform classi cation of patients with mild Alzheimer's disease vs. control subjects. We have also considered combinations of isolated cluster based classi ers and an Adaboost strategy applied to the SVM built on the feature vectors. The study has been performed on MRI volumes of 98 females, after careful demographic selection from the Open Access Series of Imaging Studies (OASIS) database, which is a large number of subjects compared to current reported studies. Results are moderately encouraging, as we can obtain up to 85% accuracy with the Adaboost strategy in a 10-fold cross-validation.
منابع مشابه
Detection of Alzheimer\'s disease based on magnetic resonance imaging of the brain using support vector machine model
Background: Alzheimer's disease (AD) is the most common disorder of dementia, which has not been cured after its occurrence. AD progresses indiscernible, first destroy the structure of the brain and subsequently becomes clinically evident. Therefore, the timely and correct diagnosis of these structural changes in the brain is very important and it can prevent the disease or stop its progress. N...
متن کاملHippocampal Atrophy Studying in Alzheimer's Disease Diagnosis Using Brain MRI Images
Background and Aim: For effective treatment of Alzheimer's disease (AD), it is important to accurately diagnosis of AD and its earlier stage, Mild Cognitive Impairment (MCI). One of the most important approaches of early detection of AD is to measure atrophy, which uses various kinds of brain scans, such as MRI. The main objective of the current research was to provide a computerized diagnostic...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کامل